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Abstract. We study the Hubbard model on three coupled chains which has the saturated
ferromagnetic ground states in a finite range of the electron filling factorν. In the case that
both the single-electron band gap between the highest and lower two bands and the on-site
Coulomb interaction are infinitely large, we will rigorously show that the present model exhibits
ferromagnetism forν0 < ν < 1

3 , where 06 ν0 6 1
6 depending on the band structure. We will

also give numerical results, which indicate that, even in the case that the band gap and the Coulomb
interaction are not so large, the present ferromagnetism will survive for suitable electron filling
factors.

1. Introduction

In spite of much research, mechanisms of ferromagnetism in itinerant electron systems are
still unclear. It is widely believed that the spin-independent Coulomb interaction and the Pauli
exclusion principle can cause ferromagnetism in itinerant electron systems, and the Hubbard
model [1–6] is regarded as a simplified suitable model for the study of ferromagnetism. Even
in this simplified model, however, we do not yet completely know under what conditions the
ferromagnetic ground states are stable. A mean-field theory for the Hubbard model yields the
so-called Stoner’s criterion, which tells us that none too small values of the Coulomb interaction
and the single-particle density of states at the Fermi surface are necessary for ferromagnetism
in this model. The criterion predicts that the Hubbard model exhibits ferromagnetism in a wide
range of parameters. Improved approximations with the inclusion of correlation effects explain
some experimental facts [7]. However, this type of the approximation usually overestimates
the tendency of ferromagnetism, so different approaches seem to be necessary to obtain a deep
understanding of the origin of ferromagnetism in the itinerant electron systems.

One of the rigorous examples of ferromagnetism in the Hubbard model was given by
Nagaoka [8], and independently by Thouless [9]. It was proved that the Hubbard model with
an infinitely large Coulomb interaction has the saturated ferromagnetic ground states when
there is precisely one hole. The theorem was extended by Tasaki to a general class of Hubbard
models which satisfy a certain connectivity condition [10].

In the last decade, several rigorous examples of Hubbard models which exhibit
ferrimagnetism or ferromagnetism were proposed by Lieb, Mielke, and Tasaki [11–14, 16, 17].
Lieb [14] showed that Hubbard models on the bipartite lattice at half-filling have the
ferrimagnetic ground states for all positive values of the Coulomb interaction when the
difference in the number of sites between the two sublattices is proportional to the number
of the whole lattice sites. Later, Shenet al [15] showed the existence of ferrimagnetic
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long-range order in Lieb’s model. Mielke and Tasaki [16] presented Hubbard models,
whose single-electron Schrödinger equations have highly degenerate ground states, exhibiting
ferromagnetism for all positive values of the Coulomb interaction. Tasaki [17] also presented
non-singular Hubbard models which have dispersive single-electron bands and exhibit
ferromagnetism in their ground states for sufficiently large finite values of the Coulomb
interaction.

Despite this remarkable progress, little is known about metallic ferromagnetism. Lieb’s
ferrimagnetism and Tasaki’s non-singular ferromagnetism are proved for a peculiar density of
electrons. As for Mielke and Tasaki’s flat-band ferromagnetism, it is proved that the models
exhibit ferromagnetism when the number of electrons is not more than and sufficiently close
to that of the degeneracy of single-electron ground states [16]. Due to the special feature of
single-electron ground states, the charge gap of their models is always zero for the number
of electrons less than that of single-electron ground states. As Mielke and Tasaki [16] said,
however, a more detailed analysis seems necessary to determine whether their models are
metallic or not.

In the Nagaoka–Thouless ferromagnetism there is exactly one hole and its motion
maintains ferromagnetism. We also studied the Hubbard model which exhibits ferromagnetism
due to one-electron motion [18]. But it is hardly expected that electric current in a bulk system
can be produced by only one hole or one electron. There are many investigations to extend the
Nagaoka–Thouless theorem to systems containing many holes [11, 19]. As far as we know,
however, no conclusive result has been obtained in this direction at the present time.

Apart from simple one-orbital Hubbard models, there are some rigorous results about
metallic ferromagnetism in certain Hubbard models with other types of interactions and in
two-orbital (two-band) Hubbard models on a one-dimensional lattice [13,20,21]. The results
rely strongly on the nature of one-dimensional systems and are obtained by applications of the
Perron–Frobenius theorem.

Recently, Kohno [22] discussed the magnetic properties in the Hubbard model on a two-
leg ladder. By using analytic and numerical calculations, he pointed out that this model
exhibits metallic ferromagnetism for the electron filling factors from1

4 to 1
2. In this model, the

Coulomb interaction between electrons in the upper and the lower bands plays an important
role in generating ferromagnetism.

In this paper, we will consider the Hubbard model on three coupled chains which exhibits
ferromagnetism in a finite range of the electron filling factorν. In the limit that both the single-
electron band gap between the highest and the other two bands as well as the Coulomb interac-
tion are infinitely large, we can rigorously show that the model has the saturated ferromagnetic
ground states forν0 < ν < 1

3, whereν0 takes a value in the range 06 ν0 6 1
6 depending

on the structure of the lower two bands. Our result is obtained through the Perron–Frobenius
argument as well as other examples of metallic ferromagnetism in one-dimensional systems.

In the infinite band-gap limit, a many-electron state with finite energy is constructed by
using single-electron states in the lower two bands. We will see that the effective Hamiltonian
of our model for the finite-energy states becomes a two-orbital Hubbard model with some
interaction terms including ferromagnetic ones between two electrons in different orbitals.
In the limit of the infinitely large Coulomb interaction, these ferromagnetic coupling terms
become dominant, therefore, the present model exhibits ferromagnetism. It is noted that
ferromagnetism in the present model is generated by the combination of the large band gap,
the large on-site Coulomb interaction, the electron hopping, and the suitable electron filling.

In section 2 we will give a definition of the present model and observe single electron
properties. In section 3 we will discuss the effective Hamiltonian and give some numerical
results. In section 4 we will prove that the present model has the saturated ferromagnetic
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ground states in the limit that the band gap and the Coulomb interaction are infinitely large.

2. Definition and single-electron problems

Let L = {1, 2, . . . , N}, whereN is an arbitrary integer, and let3 be the set defined by

3 = {i = (x,m)|x ∈ L, m = 1, 2, 3}. (1)

With the hopping matrix elements defined below, we can regard3 as three coupled chains
with 3N sites. We impose open boundary conditions. We denote the number of elements in a
set X by|X|. As usual, we denote the creation, the annihilation, and the number operators for
an electron on a sitei with a spinσ =↑,↓ by c†

i,σ , ci,σ , andni,σ , respectively. The creation
and the annihilation operators satisfy the anticommutation relations

{ci,σ , c†
j,τ } = δij δστ (2)

and

{ci,σ , cj,τ } = {c†
i,σ , c

†
j,τ } = 0 (3)

for anyi, j ∈ 3 andσ, τ =↑,↓. ByNe, we denote the number of electrons. Byν, we denote
the electron filling factorNe/(2|3|). Forα = 1, 2, 3, we will define local spin operators by
S
(α)
i =

∑
σ,τ=↑,↓ c

†
i,σ (p

(α)
στ /2)ci,τ , wherep(α) are the Pauli matrices. We will also define the

total spin operator byS(α)tot =
∑

i∈3 S
(α)
i , and denote the eigenvalues of(Stot)

2 =∑3
α=1(S

(α)
tot )

2

andS(3)tot asStot(Stot + 1) andM, respectively.
We will consider the Hubbard model on the lattice3 to be defined by

H(3) = Hhop(3) +Hint(3) (4)

with

Hhop(3) =
∑
i,j∈3

∑
σ=↑,↓

tij c
†
i,σ cj,σ (5)

Hint(3) = U
∑
i∈3

ni,↑ni,↓ (6)

where the hopping matrix elements are symmetric and given byt(x,1)(x+1,1) = t(x,3)(x+1,3) =
−2t , t(x,2)(x+1,2) = −4t , t(x,1)(x+1,2) = t(x,2)(x+1,1) = t(x,2)(x+1,3) = t(x,3)(x+1,2) = 2t ,
t(x,1)(x,2) = t(x,2)(x,3) = 2v2 +v3, t(x,1)(x,3) = v1−v2 +v3, t(x,1)(x,1) = t(x,3)(x,3) = −v1−v2 +v3,
t(x,2)(x,2) = −4v2 + v3 with t > 0, vi being an arbitrary real number (figure 1). We define the
new fermion operatorsa[x,m],σ for x ∈ L, m = 1, 2, 3 andσ =↑,↓ by

a[x,1],σ = 1√
2
(c(x,1),σ − c(x,3),σ ) (7)

a[x,2],σ = 1√
6
(c(x,1),σ − 2c(x,2),σ + c(x,3),σ ) (8)

a[x,3],σ = 1√
3
(c(x,1),σ + c(x,2),σ + c(x,3),σ ) (9)

which satisfy the anticommutation relations

{a[x,m],σ , a
†
[y,m′]τ } = δxyδmm′δστ (10)

and

{a[x,m],σ , a[y,m′],τ } = {a†
[x,m],σ , a

†
[y,m′],τ } = 0 (11)
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Figure 1. The hopping matrix elements.

for anyx, y ∈ L, m,m′ = 1, 2, 3 andσ, τ =↑,↓. By using these operators, the hopping part
of the Hamiltonian can be rewritten as

Hhop(3) =
∑
m=1,2

H(tm)hop(3) +
∑

m=1,2,3

H(ṽm)hop (3) (12)

where

H(tm)hop(3) = −tm
∑

x∈L\{N}

∑
σ=↑,↓

(a
†
[x,m],σ a[x+1,m],σ + a†

[x+1,m],σ a[x,m],σ ) (13)

H(ṽm)hop (3) = ṽm
∑
x∈L

∑
σ=↑,↓

a
†
[x,m],σ a[x,m],σ (14)

with t1 = 2t , t2 = 6t , ṽ1 = −2v1, ṽ2 = −6v2, andṽ3 = 3v3.
Let us consider the single-electron Schrödinger equation. Let80 be a state with no electron

on the lattice3. Since the states{a†
[x,m],σ80} are linearly independent and orthonormalized, a

single-electron state can be expanded as

8single=
∑

x∈L,m=1,2,3

u[x,m]a
†
[x,m],σ80. (15)

The single-electron equationHhop(3)8single = ε8single is reduced to theN × N matrix
equations of the form

H(m)

hopu
(m) = ε(m)u(m) (16)

with m = 1, 2, 3, whereu(m)(x) = u[x,m] and

[H(m)

hop](x, y) = 〈a†
[x,m],σ80,Hhop(3)a

†
[y,m],σ80〉. (17)

We denote the eigenvalue ofH(m)

hop by ε(m)l , wherel = 1, . . . , N andε(m)l 6 ε
(m)
l′ if l < l′.

We can easily find thatH(3)
hop has theN -fold degenerate eigenvalueṽ3. We can also easily see

thatvm controls the gap between bands andt controlsε(1)N − ε(1)1 andε(2)N − ε(2)1 . Though we
work on the lattice with open boundary conditions, it is useful to keep in mind the dispersion
relations on one with periodic boundary conditions. We will show these in figure 2.

3. Effective Hamiltonian and discussion

3.1. Effective Hamiltonian

In this section, we will derive the effective interaction in the limitv3 → ∞ and see how
ferromagnetic couplings are produced by Coulomb interaction terms. We will see that the
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Figure 2. The dispersion relations.

effective Hamiltonian of our model in the limitv3, U →∞ is the two-orbital Hubbard model
in a certain limit, which was studied by Kubo [20], and Kusakabe and Aoki [21].

In the limit v3 → ∞, an electron can occupy a state in the lower bands. We will define
the projection operatorP by

P =
∏
x∈L

∏
σ=↑,↓

(1− a†
[x,3],σ a[x,3],σ ) (18)

which projects a state onto the subspace without occupancy of single-electron states with the
energyṽ3. For the fermion operatora[x,m],σ , we introduce a number operator,ñ[x,m],σ , and a
spin operator,̃S(α)[x,m] , by

ñ[x,m],σ = a†
[x,m],σ a[x,m],σ (19)

S̃
(α)
[x,m] =

∑
σ,τ=↑,↓

a
†
[x,m],σ (p

(α)
στ /2)a[x,m],τ . (20)

We also definẽn[x,m] by ñ[x,m] =
∑

σ=↑,↓ ñ[x,m],σ . Using these operators, we find that the
effective form of the Coulomb interaction term becomes

PHint(3)P =
∑
x∈L

(
U

3

(
ñ[x,1]ñ[x,2]

4
− S̃[x,1] · S̃[x,2]

)
+

4U

9
ñ[x,2],↑ñ[x,2],↓

+
U

2

(
a

†
[x,1],↑a

†
[x,1],↓ +

1

3
a

†
[x,2],↑a

†
[x,2],↓

)
×
(
a[x,1],↓a[x,1],↑ +

1

3
a[x,2],↓a[x,2],↑

))
P. (21)

The first term in the right-hand side of equation (21) is a ferromagnetic spin Hamiltonian.
The large band gap effectively changes the on-site Coulomb interaction into the ferromagnetic
interaction between electrons represented bya

†
[x,1],σ anda†

[x,2],τ .
Each term in the right-hand side of equation (21) is positive semidefinite. Therefore, in

the limitU →∞, any finite-energy state8, in which no single-electron state with the energy
ṽ3 is occupied, must satisfy〈

8,

(
ñ[x,1]ñ[x,2]

4
− S̃[x,1] · S̃[x,2]

)
8

〉
= 0 (22)

a[x,1],↓a[x,1],↑8 = 0 (23)

a[x,2],↓a[x,2],↑8 = 0. (24)

Equation (22) is satisfied if two electrons represented bya
†
[x,1],σ and a†

[x,2],τ are coupled
ferromagnetically. These conditions imply that locally allowed states on a sublattice3x =
{i = (x,m)|m = 1, 2, 3} are no-electron, single-electron, and triplet two-electron states. Now



4888 A Tanaka and T Idogaki

we will regardx ∈ L as a site andm as an orbital number. The hopping termHhop(3) without
Hṽ3

hop(3) is regarded to represent the nearest-neighbour hopping of the electron in the same
orbital and the potential energy of the orbitals. Therefore, in the limitv3, U →∞, our model
is reduced to the two-orbital Hubbard model where double-occupancy of an orbital and the
doubly occupied singlet state on a site are forbidden. It was proved by Kubo [20] that such a
model has the saturated ferromagnetic ground states for the electron filling factors from1

4 to
1
2, which correspond to16 < ν < 1

3 in the present model.
In section 4 we will give direct proof for the present model including an extension to

other ranges of the electron filling factor where Kubo’s proof is not applicable. Although
the proof is mathematically similar to that by Kubo, it is emphasized that the mechanism
of ferromagnetism is quite different. In the two-orbital Hubbard model treated by Kubo,
the exclusion of the doubly occupied singlet state is due to the infinitely large inter-orbital
interaction which favours the ferromagnetic coupling between electrons in different orbitals
on the same site. In the present model, however, there is no explicit ferromagnetic coupling.
The infinitely large ferromagnetic coupling is generated by the large band gap or equivalently
the restriction of the single-electron states, and the large Coulomb interaction.

3.2. Ferromagnetism for finite values ofv3 andU

In this section, we will give some numerical results. We choosev1/t = 14.0, v2/t = 2.0
so thatε(1)N < ε

(2)
1 will hold. In this case, as we will see in section 4, the ground states of

H(3) in the limit v3, U → ∞ haveStot = Ne/2 for 1
6 < ν < 1

3. We have numerically
calculated the ground state energy for finite values ofv3 andU , and estimated a level crossing
point between the saturated ferromagnetic and other states within theM = 0( 1

2) subspace for
the even(odd) number of electrons. The calculations have been performed on lattices with
open boundary conditions for16 < ν < 1

3. In figure 3, we plotted the critical values ofv3

in the limit U → ∞ on lattices with 9, 12, and 15 sites as a function of the electron filling
factor. On the lattice with nine sites we have numerically found that the ground state has
Stot = 0( 1

2) for even(odd)Ne below the critical point, which is expected on larger lattices. In
order to obtain the critical value ofU in the limit v3→∞, we have diagonalized numerically
the effective HamiltonianPH(3)P on lattices with 9, 12, 15 and 18 sites and the results are
shown in figure 4. The critical values of the Coulomb interaction for various values ofv3 are
shown in figure 5. Although the lattice sizes in the present calculation are small to predict
correct nature in the thermodynamic limit, it seems that the present ferromagnetism survives
for suitable electron filling factors even when the values ofv3 andU are not so large.

3.3. Generalization

First we note that flatness of the single-electron band, characterized by the energyṽ3, is not
important. Let us consider the HamiltonianH(3) +H′(3), whereH′(3) is defined by

H′(3) = t̃3
∑

x∈L\{N}

∑
σ=↑,↓

(a
†
[x,3],σ ± a†

[x+1,3],σ )(a[x,3],σ ± a[x+1,3],σ ) (25)

with t̃3 > 0. The added HamiltonianH′(3) changes the flat band into a dispersive one.
SinceH′(3) is a positive semidefinite operator, if the lowest-energy state ofH(3) is a zero-
energy state for the HamiltonianH′(3), then that will also be the ground state of the whole
HamiltonianH(3) +H′(3).

Provided that the electron filling factor is less than1
3 and the flat band is the highest,

the lowest-energy state ofH(3) will be a zero-energy state ofH′(3), if it is the saturated
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Figure 3. The critical values ofv3, above which the ground
states ofH(3) in the limit U → ∞ haveStot = Ne/2, as
a function of filling factorν.

Figure 4. The critical values ofU , above which the
ground states ofH(3) in the limit v3 → ∞ have
Stot = Ne/2, as a function of filling factorν.

Figure 5. The band-gapv3 dependence of the critical
values ofU , above which the ground states ofH(3) have
Stot = Ne/2.

ferromagnetic state. Therefore, ifH(3) has the saturated ferromagnetic ground states, then
H(3) +H′(3) does also.

Next we will briefly comment on models which can be treated by the same way. Let us
introduce new fermion operators by

b[x,1],σ = 1

‖b[x,1],σ‖ (λ
(3)
x c(x,1),σ − λ(1)x c(x,3),σ ) (26)

b[x,2],σ = 1

‖b[x,2],σ‖ (λ
(1)
x λ

(2)
x c(x,1),σ − ((λ(1)x )2 + (λ(3)x )

2)c(x,2),σ + λ(2)x λ
(3)
x c(x,3),σ ) (27)

b[x,3],σ = 1

‖b[x,3],σ‖ (λ
(1)
x c(x,1),σ + λ(2)x c(x,2),σ + λ(3)x c(x,3),σ ) (28)

‖b[x,1],σ‖ = ((λ(1)x )2 + (λ(3)x )
2)1/2 (29)

‖b[x,2],σ‖ = (((λ(1)x )2 + (λ(3)x )
2)((λ(1)x )

2 + (λ(2)x )
2 + (λ(3)x )

2))1/2 (30)

‖b[x,3],σ‖ = ((λ(1)x )2 + (λ(2)x )
2 + (λ(3)x )

2)1/2 (31)

for x ∈ L andσ =↑,↓. By using these new operators, we will define the model Hamiltonian
on the lattice3 by

H(3) =
∑

m=1,2,3

(H(tm)hop(3) +H(vm)hop (3)) +Hint(3) (32)
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with

H(tm)hop(3) = −
∑

x∈L\{N}

∑
σ=↑,↓

tm(x, x + 1)(b†
[x,m],σ b[x+1,m],σ + b†

[x+1,m],σ b[x,m],σ ) (33)

H(vm)hop (3) =
∑
x∈L

∑
σ=↑,↓

vm(x)b
†
[x,m],σ b[x,m],σ (34)

wheretm(x, x + 1) > 0 for all x ∈ L\{N} andm = 1, 2. We can also prove that the ground
states ofH(3) haveStot = Ne/2 in the limit ofv3(x)→∞ for all x ∈ L andU →∞.

4. Proof

4.1. Finite-energy states

The collection of states∏
m=1,2,3

∏
σ=↑,↓

∏
x∈Sm,σ

a
†
[x,m],σ80 (35)

with arbitrary subsets Sm,σ ⊂ L such that
∑

m=1,2,3

∑
σ=↑,↓ |Sm,σ | = Ne forms a complete

orthonormalized basis of theNe-electron Hilbert space. We will expand a state by using this
basis. In the limitv3, U →∞, a finite-energy state8 must satisfy

a[x,3],σ8 = 0 for all x ∈ L and σ =↑,↓ (36)

ci,↓ci,↑8 = 0 for all i ∈ 3. (37)

From condition (36), we have

8 =
∑

S1,↑ ,S1,↓ ,S2,↑ ,S2,↓⊂L

|S1,↑|+|S1,↓|+|S2,↑|+|S2,↓|=Ne

g(S1,↑,S1,↓,S2,↑,S2,↓)8(S1,↑,S1,↓,S2,↑,S2,↓) (38)

with

8(S1,↑,S1,↓,S2,↑,S2,↓) =
∏
m=1,2

∏
σ=↑,↓

∏
x∈Sm,σ

a
†
[x,m],σ80. (39)

Let us examine condition (37). We first choosei = (y, 2). Then, we obtain

g(S1,↑,S1,↓,S2,↑,S2,↓) = 0 (40)

for S2,↑,S2,↓ such thaty ∈ S2,↑ ∩ S2,↓. This holds for ally ∈ L. There are at most three
electrons on the sublattice3y = {i = (y,m)|m = 1, 2, 3}, so for anyy we can write a
finite-energy state as

8 = 9y,0 +9y,1 +9y,2 +9y,3 (41)

where9y,k is a state which containsk electrons on3y . We easily see thatc(y,m),↓c(y,m),↑9y,k =
0 if k = 0, 1. Sincec(y,m),↓c(y,m),↑9y,2 andc(y,m),↓c(y,m),↑9y,3 are linearly independent, each
must be zero. Taking into account condition (40), the state9y,3 can be written as

9y,3 = a†
[y,1],↑a

†
[y,1],↓a

†
[y,2],↑9̃

(1)
y,3 + a†

[y,1],↑a
†
[y,1],↓a

†
[y,2],↓9̃

(2)
y,3 (42)

where9̃(l)
y,3 is a state which contains no electron on3y . Operatingc(y,1),↓c(y,1),↑ on this, we

have

1

2
a

†
[y,2],↑9̃

(1)
y,3−

1

2
√

3
a

†
[y,1],↑9̃

(1)
y,3 +

1

2
a

†
[y,2],↓9̃

(2)
y,3−

1

2
√

3
a

†
[y,1],↓9̃

(2)
y,3 = 0 (43)
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which implies9y,3 should be zero. Similarly, we rewrite9y,2 as

9y,2 = a†
[y,1],↑a

†
[y,1],↓9̃

(1)
y,2 + a†

[y,1],↑a
†
[y,2],↓9̃

(2)
y,2

+a†
[y,1],↓a

†
[y,2],↑9̃

(3)
y,2 + a†

[y,1],↑a
†
[y,2],↑9̃

(4)
y,2 + a†

[y,1],↓a
†
[y,2],↓9̃

(5)
y,2 (44)

where 9̃(l)
y,2 is a state which contains no electron on3y . Operatingc(y,1),↓c(y,1),↑ and

c(y,3),↓c(y,3),↑ on this, we obtain

9̃
(1)
y,2 = 0 (45)

9̃
(2)
y,2 = 9̃(3)

y,2. (46)

Equation (45) is equivalent to

g(S1,↑,S1,↓,S2,↑,S2,↓) = 0 (47)

for S1,↑,S1,↓ such thaty ∈ S1,↑ ∩ S1,↓. From (40) and (47), we find that a finite-energy state
can be expanded as

8 =
∑

S1,S2⊂L

|S1|+|S2|=Ne

∑
([σ ]S1 ,[τ ]S2)

g(S1,S2, ([σ ]S1, [τ ]S2))8(S1,S2, ([σ ]S1, [τ ]S2)) (48)

8(S1,S2, ([σ ]S1, [τ ]S2)) =
∏
x∈S1

a
†
[x,1],σ (x)

∏
x∈S2

a
†
[x,2],τ (x)80 (49)

where([σ ]S1, [τ ]S2) = (σ (x1), . . . , σ (x|S1|), τ (y1), . . . , τ (y|S2|)) with σ(xl), τ (yl) =↑,↓ and
the summation

∑
([σ ]S1 ,[τ ]S2)

is taken over all these spin configurations. Now we require that

the product in equation (49) is ordered so thata
†
[x,m],σ is always on the left ofa†

[y,m],τ if x < y.
From (46) or operatingc(y,1),↓c(y,1),↑ on8 in the form of equation (48) again, we obtain

g(S1,S2, ([σ ]S1, [τ ]S2)) = g(S1,S2, ([σ̃ ]S1[τ̃ ]S2)y) for all y ∈ S1 ∩ S2 (50)

where([σ̃ ]S1, [τ̃ ]S2)y is obtained from([σ ]S1, [τ ]S2) through the relations̃σ(x) = τ(x) and
τ̃ (x) = σ(x) for x = y, andσ̃ (x) = σ(x) andτ̃ (x) = τ(x) for otherwise. In consequence,
in the limit of infinitely largev3 andU , a finite energy state can be expanded in the form of
equation (48) with condition (50).

We can write equation (48) as

8 =
∑
N1,N2

N1+N2=Ne

8(N1,N2) (51)

with

8(N1,N2) =
∑

S1,S2⊂L

|S1|=N1,|S2|=N2

∑
([σ ]S1 ,[τ ]S2)

g(S1,S2, ([σ ]S1, [τ ]S2))8(S1,S2, ([σ ]S1, [τ ]S2)). (52)

Since 〈8(N1,N2),H(3)8(N ′1,N
′
2)
〉 = 0 and coefficientsg are independent if(N1, N2) 6=

(N ′1, N
′
2), we can find the lowest-energy state in each(N1, N2)-sector. Because the Hamiltonian

H(3) has a rotational symmetry, all eigenstates for it have their representatives in theM = 0
or 1

2 subspace according to the parity ofNe. Therefore our goal is reduced to find the state
8(N1,N2) which minimizes the expectation valueE(N1,N2) defined by

E(N1,N2) = 〈8(N1,N2),H(3)8(N1,N2)〉 = 〈8(N1,N2),H0
hop(3)8(N1,N2)〉 (53)

where

H0
hop(3) =

∑
m=1,2

H(tm)hop(3) +
∑
m=1,2

H(ṽm)hop (3) (54)
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within theM = 0( 1
2) subspace, with the restriction〈8(N1,N2), 8(N1,N2)〉 = 1 and condition

(50), and to findStot for it.
Hereafter we will consider the case thatNe is even. The case of oddNe can be treated in

the same way. We will work on the fixed(N1, N2)-sector, so we will abbreviate the subscript
(N1, N2) if there is no confusion. We will put a bar on a state which is normalized and satisfies
the finite-energy-state condition (50).

4.2. Proof for1
6 < ν < 1

3

In this section we will prove that the HamiltonianH(3) has the saturated ferromagnetic ground
states forN < Ne < 2N( 1

6 < ν < 1
3) in the limit thatv3 andU are infinitely large.

Now suppose

8G =
∑
γ∈�

g(γ )8(γ ) (55)

gives the minimum valueEG of equation (53) within(N1, N2)-sector, where we have used the
abbreviation,γ = (S1,S2, ([σ ]S1, [τ ]S2)), and the set� is defined by

� =
{
(S1,S2, ([σ ]S1, [τ ]S2))

∣∣∣∣ S1,S2 ⊂ L; |S1| = N1, |S2| = N2,

σ (x), τ (x) =↑,↓;∑x∈S1
σ(x) +

∑
x∈S2

τ(x) = 0

}
. (56)

We can easily see that〈8(γ ),H0
hop(3)8(γ

′)〉 for γ 6= γ ′ is 0,−t1, or−t2, i.e., is not positive.
From this, we have

EG =
∑
γ,γ ′∈�

g(γ )g(γ ′)〈8(γ ),H0
hop(3)8(γ

′)〉

>
∑
γ,γ ′∈�

|g(γ )||g(γ ′)|〈8(γ ),H0
hop(3)8(γ

′)〉. (57)

It is obvious that if{g(γ )} satisfies condition (50), then{|g(γ )|} does as well. Therefore, the
state

8′G =
∑
γ∈�
|g(γ )|8(γ ) (58)

is also the lowest-energy state.
We will prove a positivity of expansion coefficients and the uniqueness of the lowest-

energy state. Before we give a proof of these, we will introduce some notations. Ify + 1 /∈ Sm
and S′m = {y + 1} ∪ Sm\{y}, or y − 1 /∈ Sm and S′m = {y − 1} ∪ Sm\{y}, for oney ∈ Sm, we
write S′m ↔ Sm. If ([σ ′]S1, [τ

′]S2) can be reduced to([σ ]S1, [τ ]S2) by switching some pairs of
σ ′(x) andτ ′(x) for x ∈ S1 ∩ S2 we also write([σ ′]S1, [τ

′]S2)↔ ([σ ]S1, [τ ]S2). Forγ ′ andγ ,
if one of the following relations is satisfied:

(i) S′1↔ S1, S′2 = S2, and([σ ]S′1, [τ ]S2) = ([σ ]S1, [τ ]S2)

(ii) S′2↔ S2, S′1 = S1, and([σ ]S1, [τ ]S′2) = ([σ ]S1, [τ ]S2)

(iii) ([σ ′]S1, [τ
′]S2)↔ ([σ ]S1, [τ ]S2)

then we say they are directly connected and again writeγ ′ ↔ γ . For γ1 andγn, if we can
find a sequence of{γl}n−1

l=2 such thatγl andγl+1 are directly connected, then we say they are
connected.

First we observe that anyg(γ ) is non-zero. Now suppose that oneg(γ1) with γ1 =
(S1

1,S
1
2, ([σ ]S1

1
, [τ ]S1

2
)) is zero. Then, from condition (50), we haveg(γ ′1) = 0 for all

γ ′1 such thatγ ′1 = (S1
1,S

1
2, ([σ

′]S1
1
, [τ ′]S1

2
)) with ([σ ′]S1

1
, [τ ′]S1

2
) ↔ ([σ ]S1

1
, [τ ]S1

2
). Since
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〈8, (H0
hop(3) − EG)8〉 is non-negative for any normalized finite-energy state8, by using

the Schwartz inequality, we have

〈8, (H0
hop(3)− EG)8

′
G〉|2 6 〈8, (H0

hop(3)− EG)8〉〈8′G, (H0
hop(3)− EG)8

′
G〉 = 0. (59)

This means

〈8,H0
hop(3)8

′
G〉 = EG〈8,8′G〉 (60)

holds for all finite-energy states. We choose8 as

8 = Const.
∑

([σ ′]S1
1
,[τ ′]S1

2
)↔([σ ]S1

1
,[τ ]S1

2
)

8(S1
1,S

1
2, ([σ

′]S1
1
, [τ ′]S1

2
)) (61)

where Const. is a normalization factor, and the summation is over spin configurations
([σ ′]S1

1
, [τ ′]S1

2
) which satisfy the relation([σ ′]S1

1
, [τ ′]S1

2
) ↔ ([σ ]S1

1
, [τ ]S1

2
) including

([σ ]S1
1
, [τ ]S1

2
) itself. It is noted that this8 satisfies the finite-energy-state condition. From

equation (60), noting〈8,8′G〉 = 0 by the assumption, we obtain∑
([σ ′]S1

1
,[τ ′]S1

2
)↔([σ ]S1

1
,[τ ]S1

2
)

∑
γ∈�
|g(γ )|〈8(S1

1,S
1
2, ([σ

′]S1
1
, [τ ′]S1

2
)),H0

hop(3)8(γ )〉 = 0. (62)

Forγ ′ 6= γ , 〈8(γ ′),H0
hop(3)8(γ )〉 is always non-positive, and therefore this equation holds

only if g(γ ) is zero for allγ such that〈8(S1
1,S

1
2, ([σ

′]S1
1
, [τ ′]S1

2
)),H0

hop(3)8(γ )〉 is non-
zero. We can easily see that at least that is non-zero ifγ is equal to(S′1,S

′
2, ([σ ]S′1, [τ ]S′2))

with S′1 ↔ S1
1, S′2 = S1

2 and ([σ ]S′1, [τ ]S′2) = ([σ ]S1
1
, [τ ]S1

2
), or S′1 = S1

1, S′2 ↔ S1
2 and

([σ ]S′1, [τ ]S′2) = ([σ ]S1
1
, [τ ]S1

2
). Therefore,g(γ ) must be zero for suchγ . From the above

discussion,8′G = 0 or equivalently8G = 0, if anyγ is connected toγ1. As we can see below,
for N < Ne < 2N anyγ andγ ′ are actually connected. This leads to a contradiction, and in
conclusion,g(γ ) cannot be zero.

We will prove the connectivity ofγ in the caseN1 > N2. A proof for the case
N1 < N2 is the same. It is noted that 0< N2 < N becauseN < Ne < 2N . Let
γ0 = (S0

1,S
0
2, ([σ

0]S0
1
, [τ 0]S0

2
)), where S0m = {1, . . . , Nm}, σ 0(x) =↓ for 1 6 x 6 Ne/2,

σ 0(x) =↑ forNe/2+16 x 6 N1 andτ 0(y) =↑ for ally ∈ S0
2. It is enough to show that anyγ is

connected toγ0. Let us start withγ1. We can easily see that it is (usually not directly) connected
to γ2 = (S0

1,S
0
2, ([σ ]S0

1
, [τ ]S0

2
)) where([σ ]S0

1
, [τ ]S0

2
) = ([σ ]S1

1
, [τ ]S1

2
). It is also obvious thatγ2

is directly connected toγ3 = (S0
1,S

0
2, ([σ

3]S0
1
, [τ 3]S0

2
)), where([σ 3]S0

1
, [τ 3]S0

2
) is obtained from

([σ ]S0
1
, [τ ]S0

2
) through the relationsσ 3(x) =↓ andτ 3(x) =↑ if σ(x) =↑ andτ(x) =↓, and

σ 3(x) = σ(x) andτ 3(x) = τ(x) if otherwise. Then there are three combinations ofσ 3(x) and
τ 3(x), which are(σ 3(x), τ 3(x)) = (↑,↑), (↓,↓), and(↓,↑). Let us assume that the number
of the combination(σ 3(x), τ 3(x)) = (↑,↑) is larger than that of(σ 3(x), τ 3(x)) = (↓,↓).
The inverse case can be treated in the same way. Let us assume that(σ 3(z), τ 3(z)) = (↑,↑)

Figure 6. The connectivity betweenγ3 andγ5.
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and(σ 3(z + 1), τ 3(z + 1)) = (↓,↓) for somez ∈ L. In this case, we can find a sequence
(S0

1,S
0
2, ([σ

3]S0
1
, [τ 3]S0

2
)) ↔ · · · ↔ (S0

1,S
4
2, ([σ

3]S0
1
, [τ 3]S4

2
)) ↔ (S0

1,S
4
2, ([σ

4]S0
1
, [τ 4]S4

2
)) ↔

· · · ↔ (S0
1,S

0
2, ([σ

4]S0
1
, [τ 4]S0

2
)) ↔ (S0

1,S
0
2, ([σ

5]S0
1
, [τ 5]S0

2
)) = γ5, where S42 = {1, . . . , z −

1, z + 1, . . . , N2 + 1}, (σ 5(z), τ 5(z)) = (↓,↑), and(σ 5(z + 1), τ 5(z + 1)) = (↓,↑) (figure 6).
Next, let us assume that(σ 5(z), τ 5(z)) = (↑,↑) and (σ 5(z + 1), τ 5(z + 1)) = (↓,↑)
for some z ∈ L. In this case, we can also findγ6 = (S0

1,S
0
2, ([σ

6]S0
1
, [τ 6]S0

2
)) with

(σ 6(z), τ 6(z)) = (↓,↑) and(σ 6(z + 1), τ 6(z + 1)) = (↑,↑), which is connected toγ5 through
a similar sequence. Therefore, we can findγ ′ = (S0

1,S
0
2, ([σ

′]S0
1
, [τ ′]S0

2
)) which is connected

to γ3 and whose spin configuration is such a one as(σ ′(x), τ ′(x)) = (↓,↑) for 1 6 x 6 N ′
and(σ ′(x), τ ′(x)) = (↑,↑) for N ′ + 16 x 6 N2 with some integerN ′ 6 N2. We can easily
see thatγ ′ is connected toγ0. Therefore, we can conclude thatγ1 is connected toγ0.

From (57) we have∑
γ,γ ′∈�

(g(γ )g(γ ′)− |g(γ )||g(γ ′)|)〈8(γ ),H0
hop(3)8(γ

′)〉 = 0. (63)

Since〈8(γ ),H0
hop(3)8(γ

′)〉 and(g(γ )g(γ ′)−|g(γ )||g(γ ′)|) are non-positive, and anyg(γ )
is non-zero, by using the connectivity ofγ again, we find that allg(γ ) have the same sign. We
choose the plus sign. From this, we can see the uniqueness of the lowest-energy state. Suppose
that there are two linearly independent lowest-energy states. Without loss of generality we can
assume that these are orthogonal. Then, any linear combination of these states, which might
have a negative coefficient, is also the lowest-energy state, and this leads to a contradiction.
Therefore, we can conclude that the lowest-energy state is unique.

Now we can easily show that the lowest-energy state in each(N1, N2)-sector, hasStot =
Ne/2 and therefore so does the ground state. The lowest-energy state is unique, so it must be the
eigenstate for(Stot)

2. We will prepare the state8ferro =
∏
x∈S0

1
a

†
[x,1],↑

∏
x∈S0

2
a

†
[x,2],↑80, whose

Stot isNe/2. The positivity of expansion coefficients for8G implies that〈(S−tot)
Ne/28ferro,8G〉

is non-zero, whereS−tot, the total spin lowering operator, is defined byS−tot =
∑

j∈3(S
(1)
j −iS(2)j ).

Therefore, we can conclude thatStot for 8G isNe/2.

4.3. Extension to the electron filling factorsν0 < ν < 1
3 with 06 ν0 <

1
6

We can extend the result in the previous section toν0 < ν < 1
3 with 0 6 ν0 <

1
6 if the lower

two bands have an overlap in the sense that(ε
(1)
1 , ε

(1)
N ] ∩ (ε(2)1 , ε

(2)
N ] 6= ∅.

First we observe that in the case ofv3, U → ∞ and(ε(1)1 , ε
(1)
N ] ∩ (ε(2)1 , ε

(2)
N ] 6= ∅, there

existsν0 with 0 6 ν0 <
1
6 such that forν 6 ν0 the ground states ofH(3) are in the(Ne, 0)-

or (0, Ne)-sector, but forν0 < ν they are in the(N1, N2)-sector with non-zeroN1 andN2. To
prove the above statement we will consider the HamiltonianH(3) +HJ (3), whereHJ (3) is
defined by

HJ (3) = J
∑

x∈L\{N}

∑
m=1,2

(
ñ[x,m] ñ[x+1,m]

4
− S̃[x,m] · S̃[x+1,m]

)
. (64)

Since〈8(N1,N2),HJ (3)8(N ′1,N
′
2)
〉 = 0 if (N1, N2) 6= (N ′1, N ′2), we can again work on the fixed

(N1, N2)-sector in the limitv3, U → ∞. By following the same method as in the previous
section, we can prove that the lowest-energy state of the HamiltonianH(3) +HJ (3) within
each(N1, N2)-sector hasStot = Ne/2 and is unique up to its trivial degeneracy due to the
rotational symmetry for the electron filling factor 0< ν 6 1

3 if J is positive. By the continuity
of the energy, it is concluded that the lowest energy ofH(3) within each(N1, N2)-sector is∑2

m=1

∑Nm
l=1 ε

(m)
l although the uniqueness may or may not hold. For a givenNe, we will find
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the pair of(N1, N2) which minimizes
∑2

m=1

∑Nm
l=1 ε

(m)
l . Therefore, according to the values of

t , v1 andv2, we findν0 with 06 ν0 <
1
6 such that forν satisfyingν 6 ν0 the minimum value

of
∑2

m=1

∑Nm
l=1 ε

(m)
l is given by(Ne, 0) or (0, Ne), but for ν satisfyingν0 < ν it is given by

(N1, N2) with non-zeroN1 andN2.
Now suppose that we find that the ground states ofH(3) are within a(N1, N2)-sector

with 0< N1 < N and 0< N2 < N . By following the same method as in the previous section
again, we can reach the conclusion that the lowest-energy state within the(N1, N2)-sector has
Stot = Ne/2 and is unique up to its trivial degeneracy. ThereforeH(3) in the limitv3, U →∞
has the saturated ferromagnetic ground states forν0 < ν < 1

3, whereν0 takes a value in the
range 06 ν0 <

1
6 depending on the values oft , v1 andv2.

We end the proof by giving two remarks.
If we impose periodic boundary conditions, we will meet a sign problem caused by

exchange of fermion operators. We can see, at least, that the lowest-energy state has
Stot = Ne/2 in the (N1, N2)-sector with bothN1 andN2 being odd integers, but cannot
see anything in other sectors.

We can construct models in higher dimensions similar to the present model. However, it
is almost impossible to extend the argument in this section to models in higher dimensions,
where we cannot avoid a sign problem of fermion operators. It is an interesting problem to
investigate magnetic properties of the effective Hamiltonian in the limit of the infinitly large
band gap in higher dimensions.
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